\qquad

1) Multiply the two matrices below or state why they cannot be multiplied. (15 points)

$$
\left[\begin{array}{cc}
1 & 4 \\
2 & 3 \\
5 & -1
\end{array}\right]\left[\begin{array}{ccc}
0 & -3 & 1 \\
2 & 2 & 4
\end{array}\right]
$$

2) Find the null space of the matrix below. (16 points)
$\left[\begin{array}{lll}1 & 1 & 3 \\ 2 & 2 & 6 \\ 0 & 0 & 4 \\ 0 & 0 & 7 \\ 0 & 0 & 0\end{array}\right]$
3) Reduce the matrix below to reduced row echelon form. (16 points)
$\left[\begin{array}{cccc}1 & 2 & 5 & 6 \\ 0 & 2 & 4 & 6 \\ 2 & 4 & 10 & 15 \\ 1 & 4 & 9 & 12\end{array}\right]$
4) Answer the questions below (3 points each)
(A) Let A be a 2×4 matrix. How many solutions does $A \vec{x}=\overrightarrow{0}$ have?
(B) Let A be a 4×2 matrix. In row reduced echelon form, it has 3 rows of zeroes. How many solutions does $A \vec{x}=\overrightarrow{0}$ have?
(C) Let A be a 3×3 matrix such that $A \vec{x}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ has one solution. How many solutions does $A \vec{x}=\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]$ have?
(D) If A is a 7×7 matrix and the dimension of the row space is 5 , what is the dimension of the column space?
(E) If A is a 7×5 matrix such that $A \vec{x}=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]^{T}$ has infinitely many solutions, what is the maximum dimension of the row space of A ?
5) Find the length of the vector below. (8 points)
6) Are the vectors below orthogonal to each other? Justify your answer. (8 points)
$\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 4\end{array}\right]$ and $\left[\begin{array}{c}-2 \\ 3 \\ 5 \\ 0\end{array}\right]$
7) Identify a good partition to use to multiply the matrices below, then multiply them. (7 points)

$$
\left[\begin{array}{lllllll}
1 & 2 & 0 & 0 & 0 & 0 & 0 \\
3 & 4 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
5 & 3 & 0 & 0 \\
0 & 0 & 4 & -5 \\
0 & 0 & 7 & 7 \\
0 & 0 & 9 & 11 \\
0 & 0 & 1 & 2 \\
0 & 0 & 4 & 6
\end{array}\right]
$$

8) Multiply the vector $\vec{v}=\left[\begin{array}{l}1 \\ 4 \\ 3\end{array}\right]$ by the scalar 5. (8 points)
9) Add the matrices below. (7 points)

$$
\left[\begin{array}{ll}
2 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{cc}
3 & -3 \\
0 & 4
\end{array}\right]
$$

